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Y ABSTRACT é
; Techniques for determination of "dynamic" error parameters, or those S
\ obtained from real trajectories, are studied in detail, with particular g
! attention being given fo dependence of estimates on frajectory and fo
¥ shortcomings of est mation procedures which ignore such dependence. {
i A technique is preseated to determine dynamic estimates of error pera- §
E meters {for the rawinuonde and is verified by data. The data indicate 1
! that error parameters so determined are smaller than given by most
] earlier studies and tend to conform to error ciaims made for the
2 AN/GMD-(1A} Rawinset,
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INTRODUCT ION

If a moving object is under ~<Uservation by a given fracking system, the
observations so made generally take the form of a sequence of vectors,
each of which is related 1o a specific time, and whose comgonents give
estimates of tne object's position in some convenient coordinate system.
For a radar. this sequence is of the form {(xi, Gj, ei)|i=|,n}, where
each vector ir. the sequence represents range, azimuth, and elevaticn,
respectively, at times {+i|i=l,n} in the obvious fashion. In contfrast,
the rawinsonde system for balioun tracking gives rise fo the family
{(a';, e'y, 2'., pj, hj)|i=1,n}, where the components of a vector re-
present azimuth and elevation from the AN/GMD-( ) windset, and temper-
ature, pressure and humidity from the radiosonde balloon. Here agzin
all vectors are indexed by a time value. From each vector (a';, e';,
', pj, hi), a new vector (a'y, e';, ;) is derived through use of
the hydrostatic equation. The family {(a';, e';, zj)|i=i,n} so formed
represents positior coordinates in a curvilinear system. It is this
system which wiil be considered in the following study. .

In the statistical model to be employed, a sequence of vectors arising
in the fashion aiscuss:d previousiy will be considered as a single
realization of an appropriate subprocess of a multivariate stochastic
process. Tne index set for this process will be a set T containing
{+i|i=l,n}. for each T in T, the corresponding multivariate random
variable will have as its mean a vector which represents rhe position
of the object in an appropriate coordinate system and wil, have as

its variance-covariance matrix a matrix I independent of t+. The pro-
blems to be addressed in this study are concerned with obtairing es-
timates of the matrix I from a single realization of some multivariate
subprocess. Such estimates will be designated as "dynamic", as they
represent the behavior of the system in motion, as contrasted to
svatic tests which obtain error estimates for a fixed configuration.
The marginal procuisses are in general nonstationary, even in the weak
sense [1] due to the variation of mean values with changing t, so
+that the problems involved may be considerable.

Chief among the problems encountered is the dependence of the estimates
on trajectory. Supnpcse it is desired to cbtain dynamic error parameters
for a radar. Superficially, one might adopt the following procedure.
The radar to be testec and a second radar of known error behavior are
placed in close proximity and allowed to frack an object simultaneously
for a time interval T. The radars may be expected to g.ve rice to
vector sequences {(xj, a;, ej)|i=l,n} and {tn';, a'y, eti)|i=t,n},
respectively, where the unprimed sequence will represent the radar of
unknown error characteristics. As position and vel¢city are generally
studied in a cartesian coordinate system, transform each to a single
fixed reference system (X, Y, Z), obtaining sequences {(xj, yi, zi)|i=l,n}

s 7 e s e =

cv v e



and {(x';, y';, 2'i,2|i=1,n}. If calibration procédures are correct, up
fo errors introduced by the sysiem itse!f, these values should bs . .
idenfical. Therefore, members of the vector sequence {(xj-x';, yi=y'i,
zj=z'{)|i=1,n} should have near-zero components, and the variances and
covariances required to determine the error behavior of the radar with.
reference o (x, y, z)} position estimates may be calculated. With

these values, the behavior of derivative estimatcs are determined. This
procedure has been in common use in the past to estimate error behavior.
To understand the difficul*ies introduced by such a procedure, addjtional
background will be required and will be presented in the following secfion.
This presentation will be made for two reasons. First, it is worthwhile
from the standpoint of understanding error behavior introduced by mathe-
matica: transformations in a radar, and second it is necessary for the
understanding of a fechnique to be introduced for determining dynamic
error parameters for the rawinsonde. ! .

ERROR BEHAVIOR IN THE TRANSFORMATIQON FROM
SPHERICAL TO RECTANGULAR CARTESIAN COORDINATES

Let an object be moving along a trajectory {(p(t+), a(t), e(f))|teT}
relative to a given spherical coordinate system. Suppose a radar is
located at the origin of this coordinate system and oriented in such a
fashion that a point (p, a, €) in the system corresponds to range,
azimuth, and elevation as seen by the radar. Let a sequence

{(1j, a;, ej)|i=i,n} of observations be taken in the time interval T,
along the given trajectory, these observations occurring at times
{+;|i=l,n}. IT is desired to determine the trajectory of the noving
object with respect to a rectangular coordinate system related to the:
first by the transformation v

X = pCOSACOSE
y = psinacose S
z = psine

which will be called T.

From (1) the family {(xj, a;, e;)]i=!,n} gives rise to a new family

(x, 4,, zi)|i=l,n} in an obvious manner. |f the first of these fami-
lies is considered as a realization of a subprocess of a combined

random process {(Rt, A, E4)|teT}, {(xj, yj, zj)|i=1,n} becomes a reali-
zation of a subprocess of the joint stochastic process {(Xt, Y+, Z4)|teT} .
defined for each + in T by o

-
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X, = R?qosA+cosET

-
1]

RfsinAfcosE? o :

N—
n

R sinE

; :
Recall that for any + in T, {RT’ Af, Es) has mean vector (p(1), a(t),
e(t)) end variance—covar!ance mafrlx t. Let R be a region in thrse-space
in which T is at least of class C! (possesses continuous partial deriv~
atives of order at.ledst 1), and assume {(p(t), alt?, e(f))l sT} lies
entirely in R. It is known [2] that for a given precision fijure ¢,

there exist a trarsformation L and a constant A dependen+ on § such
Thaf

' g R Tr(E)
Pr{|[L(Ry, A ED - TRy, A, ED|l 2 8} ¢ 5 (2)
I
whgre tr(2) denotes the trace of I. Vs
L
From (2), if tr(Z) is sufficiently small, the random vectors LR, A
and T(Ry, A+, Et) differ only slightly in thejr behavior. The advaniage

of this lies id the fact that the variance-covariance matrix of L(Ry, At, Et)

has the simple form dT+ZdT4, where dT+ is the differential of the trans-
formation T evaluated at (p(+), al(t), e(t)), and dTT denotes the trans-
pose of dT+ [3]. The wmatrix dTt has a simple form

] . :
cosa(ticose(t) -p(t)sina(t)cose(t) -plt)cotalt)sine(t)
41, = . [sina(f)cose(t) ‘o (+)cosa () cose (1) -p(:i')sina(f)sine('l')J (3)

Ls'inem 0 : o(t)cose(t)

From (3) the matrix o'y = dT¢2df+ may easily be calcuIaTed.

As an example, let the object tracked be a ballcon risjng at a flxed rate,
a, in still air. Assume, the balloon is released a horizontal distance,

b, along the line a = 0. The parametric equations for the balloon tra-
Jjectory are . Co '

(b2 +1a2t2) /2

i cip(t) = :
alf)'=0

; ] ‘ . :
e(t), = arcrss b

b2+ a‘?zjila)‘

P
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The matrix dTi becemes, for the time 1,

- . _
oL F aZt? 0 -at
0 b 0
al
wTFa5z O b |-
The matrix z'+ may now be calculated, obtaining
°11 ) bato |
52 1 227 8 %os3 0 5TF %re - PATogg
2
0 b 950 0
bato a2+2g
"'2""‘"“ bato 0 4 b2
be + 52'-2' 33 W 53 .

The matrix Z'_r has, at =0, the simpie form

o“ 0 N
0 b2022 0
2

_0 0 b 033-

As t increases, o'||(t), the eniry of E'y in the first row and column,
either decreases from o X to a minimum of

bvo,.(2vo,, - bYo,,)

33 I 33

at

b/{gll 172
t =2 —] -1
a :bco ) ’

then increases without bound thereafter, the case occurring when
9 bo33, or o' l('r) increases without bound as t increases, the
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case for || ¢ bozz. Clearly o'22(1) remains constant for all values

of T in T while o733 increases from b%g%33 at 1 = 0 approaching c2||

+ b%0235 as i becomes largs. The noazero covariance term o'j3(1)=0'3)(t)
like o', (1), achieves an extremal value only if g > bozz, in thic case
a maximum, then decreases without bound with increasing t values. In
this case, when t is large, these terms resembie -bato3zz. If o||<buzz,
o'y3(F) = o'31(+) decreases without bound from + = 0, again resembling
-ba¥o33 when T is large. It is not difficult to see the role played

by b in the mairix £'4. This emphasizes the dependence of the matrix
Z'+ on the trajectory chosen. Clearly, if two radars ai different loca-
tions, say horizontal distances b and bz, observe the same balloon,

then at a given time t, the associated variance-covariance matrices of
the two random vectors produced would vary considerably. [t would
appear then that a reaiization of the process {(Xt, Y4, Z+)|+eT} is
useless in the estimation of error parameters except in the grossest
sense, so that other techniques must be utilized to describe the errcr
behavior of the system., Such a technique will now be presented.

I+ is possible to approach the problem from a direct statistical stand-
point, and results of some generality may be obtained. However, these
techniques require knowledge or approximate knowledge of trajectory and,
for the cace of the rawinsonde, have the unfortunate characteristic of
being unable to exclude induced balloon oscillations. For this case
the results are included only as an appendix.

ESTIMATION OF DYNAMIC ERROR PARAMETERS FOR
THE AN/GMD-( ) BY USE OF A RADAR

'f a rader such as the T-9 or FPS-16 is available and in a proper con-
figuration with the AN/GMD-( ), the following approach to the evaluation
of error parameters of the AN/GMD-( ) shows promise. Let a radiosonde
balloon be released and simultaneously tracked by the radar and the
AN/GMD-( ). The output of the former of these devices consists of a
sequence of vectors {(#j, aj, ¢{)|i=1,n} where the compcnents of a vector
(14, aj, ¢j) represent range, azimuth, and elevation estimates, respec-
tively, for a time t; in the interval [t), t,] under consideration.

The latter system has as its output the vector sequence {(by, §1)]i=1,n}.
In this case, the components of a vector (bj, §;) are estimates of
azimuth and elevation, respectively, at a time t; identical to that time
specified above, The vector sequences {(x;, aj, el)lirl,n} and

{(b;, §i)]i=1,n} will be ~onsidered as realizations of appropriate vector
subprocesses of the continuous vector processes {(Ry, A+, Ei)|teT} anc
{(By, F+)|+eT}, respectively, where [t|, tpJ is contained in T. The

mezn for the former of these processes will be the vector function
{(p(1), alt), (1)) |1eT} which gives the true trajectory of the ba!loon
in the obvious spherical coordinate system associated «ith the radar.

The vector function {(B(1), ¢(+)}|teT} plays an exactly similar role
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with the GMD. I+ will also be assumed that the former sequence has
variance~covariance matrix I independent of t+ in T, and the latter the
variance-covariance matrix T', likewise independent of + in T. Now let
(A, 6§, n) be a vector giving in compunent order ranye, azimuth and ele-
vation or the radar under consideration with respect to the GMD. In
other words, (A, 8§, n) are the spherical coordinates of vhe radar with
respect to the obvious system located at the GMD. (See Figure [.) It
will be assumed throughout that the radar and the GMD are in parallel
orientation. 11 is clear that if A is sufficiently large, this would
not in genesral be the case, this due +o the curvature of the earth.

The equations relating (B(1), ¢(1+)) and (p(+), al(t), e(+)) will be more
complicated when the earth's curvature is included than when it is not;
therefore, from a standpoint of simplicity, *he parallel orientation
model is desirable. Also, as will be made clear later, if A is chosen
too large, the method for evaluating dynamic parameters to be presented
now will fail. Then concern will be only with X so small that curvature
of the earth presents a negligible efrect.

Under these circumstances, and under suitable restrictions, the follow-
ing equations may be shown to hold:

- p(t)cose(t)sinalt) + Acosnsing
B(T) = arctan [p(T)cose(?)cosa(f) + Acosncosé]
(4)
(1) = arctan [p(f)sine(f) + Asinn]
o)

where y(t) Is given by

i) = [(p(t)cose(t)) 2 + (Acosn)2 + 2ap (1) cosncose (t)cos (al+)=-8)].

The equations in (4) define a transformation of Euclidian 3-space into
Euclidian 2-space which will be denoted by T*, I+ follows by definition
that {T*(p(+), alt), e(+))|+eT} is identically the vector function
{s(h, ¢(f))|TeT} If quadrant ambiguities are considered. The vector
process {T*(Ry, Ay, E)|teT} would be expected to exhibit behavior in
Its mean similar to {(B}, F4)|teT}. The complicated nailure of T* pro-
hiblts direct calculation of the mean and variance-covariance matrices
of the various vectors in {T*(Ry, A+, E4)|teT} even under assumptions

of Joint normality of the process {(Ry, A+, Et)|teT}. In this case it
becomes necessary to resort to approximation. The magnitude of the ele-
ments of I suggests that satisfactory approximations of both the mear and
the variance-covariance matrix of (T*(Ry, At, E4)|teT} ere pessible in
terms of I and {(p(1), a(t), e(+))|+eT} [2]. In this light, the approx-
imation to the desired variance-covariance matrix of 1*(Ry, Ay, E)

is simply dT*;IdT*; where dT*+ is the differential of the transformation

6
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™ [3] a* (p(t), alf), (1)), and IT*, denotes the transpose of this
matrix. The.calculation of dT*, is routine but tedious, and the follow-

ing definitions will be made to <implify notaticn.

A = (p(+)cose(1))2 + (Acosn)? + 2Acosnp(t)cose{t)cos(alt)-8).

For i=l, 2, j=1, 2, 3, let w*(i,j,1) designate the i, jth entry cf dT*+.

Then

Acosncose(t)sin(a(t)-6)

p¥(l,1,1) =

e —

(D
x _ [o(t)cose(t)]2 + p(+)Acosncose(t)cos(alt)~6)
W*(1,3,4) = Acosqsineijiiin(a(f)-G)
’ M _ A%cosulsine(t)~ = - cose(t)sinncos(a(+)-8)]
¢ u (2, ‘ ,1-) = 0 .
: M)
: . Ap(T)cose(f)Esinncose(T) - cosnsine(¥)cos(alti~6)]
: ' MY
M _[ott)sine(t) + AsinnllAp(t)cosncose(t)sin(ai{t)~8)]
n¥(2,2,1) = —
6 AT
; . i
u*(2,3,1) = p3(t)coselt) + 2xp2(+) cos2e(+)cosncos(alt)-5)
: ’ AVH(TY
’ + M Lott)sine(t) + Asinnlsinncose(t) + cosesinelt)cos(al+)-8)]
AYTEY
Observe that the fcllowing relations hold.
[lmu*(l,Z,f) = |imu¥*(2,3,t) = |
p (1) p(t)

[

Himp*C1, ,1) = Vimu¥(2,k, 1) = 0 j#2, k#3.
p{t)re. p(t)=

s v e =t amon v e
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Hence in the case of very large p(1), the matrix dT*; resembles the
matrix

e I 0
0 0 |

and dT*+2df*+ resembles

o o ]

22
5o

the lower principal submatrix of £, |t follows that for p(1) sufficiently
large, the bivariate random variable ([B+=T¥(Ry, Ay, Ep)], [Fp-T5(Ry, A4, Et)]
has as its vairiance-covariance matrix a mafrlx resembling

O™} 93172
2

O39%Y2) 933Y90

where the dependence of the matrix on the Trajecfory {(p(1), al(t), e(f))lTeT}
has been nearly eliminated. Clearly the variance-covariance matrix
assocuafed with any other time 1' will also have the above form if p(t')

2 p(t). It should be noted that the estimate of T will be dT*+2ddT*+-z'
where L' is the lower principal 2x2 submatrix of Z. As p(t) increases,
the matrix dT*fsz*+->' becomes increasingly less dependent on the
trajectory and gives an increasingly more valid representation of T.
In addition, an examination of dT*{LdT*; yields that terms of the nature
of

A
p(T)

will be present. Clearly then if it Is desired that these terms go to
zere, p(t) must be large with respect o A. This may be facilitated

if a configuration can be chosen such that A is small with respect to
ranges which may be encountered. |f such a configuration is not possible,
practical attempts at estimating I in this fashion will fail, and in
general will result in overestimation of the magnitudes involved. For
this reason, it is clear that ths magnitude of A required for successful
evaluation of dyncmic parameters wil! be so small that curvature problems
are of no consequence., |t should be mentioned at this +ime that the
vectors of means of the members of the family {T*(R4, E4)|teT} are
biased away from the respective vectors in {T*(p(t), a(I), e(H))|teT}.
These biases, however, may be shown to be very small when p(t) is large.
The demonstration of this fact is routine but tedious and will be

9
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omitted. It follows that if p(1+) is large, the bivariate process

(Bt - ¥Ry, Ay, E)], [Fs - 9o(Ry, A, ER)D|teTt will have mean
near zero and independent of t in T. In this portion of the trajectory
the process is very near to weak'y stationary and hence behaves as a
sample. One may then estimate the diagonal members of the variance-
covariance matrix of this process and hence obtain an estimate of T.

In Table 1, estimates of I are derived using FPS-16 radars and AN/GMD-IB
windsets at various base lines, or A values. The scarcity of data is re-
cognized, but the tendencies indicated bear out the theoretical develop-
ment, and would seem to indicate that the AN/GMD-IB is operating at near
*o engineering specifications insofar as measurement of azimuth and
elevation angles is concerned.

The prohlems of greatest magnitude associated with the rewinsonde system
appear 1o be related to errors in height. A systematic study of the
effects of height errors on position estimates for the rawinsonde

system is found, for example, in [4] and indicates rhat for small eleva-
tion angles, system performance depends critically on height errors,
with small excursions in height causing large excursions in correspond-
ing position estimates.

Errors in heignt may be divided into two classes. The first are errors
due to systematic biases and random fluciuations in the instruments mea-
suring temperature, pressure, and humidity, The second are errors due
Yo physical situations which may cause variations in the validity of

the hydrostatic equation., |t is clear that errors such as fhese can
vary with height and from run to run. If an individual trajectory is
examined, only the excursions due to random fluctuations in the instru-
mentation of the radiosonde package are apparent. The remaining errors
generally take the form of biases, the presence of which is not obvious
from the examinetion of a single trajectory unless this trajectory is
compared with a trajectory measured by a device whose error behavior
results in a trajectory which is not so greatly biased away from the
absolute; a trajectory such as that measured by an FPS-16. The exact
error behavior of height measurements due to random fluctuations in
temperature, pressure, and humidity is difficult to obtain, even approx-
imations of this quantity. This is due to the complexity of the mathe-
matical operations involved and the number of interacting factors. How-
ever, ‘the portlon of the variance of height estimators due To this aspect
is believed by the author to be quite small in relation to the remaining
contributors, This explains the smoothness and small excursions observed
in a single trajectory. It is oniy when many t-ijectories are available
which may be compared with absolute trajectories that the effects of

the remaining contributors become apparent. It is suspected by the
author that the effects of the latter contributors may be an order of
magnitude greater than the former. As has been remarked, the magnitudes

10
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of the errors in height may be expected to vary with height, and from
run 7o run; a single error parameter, or for that matter any number of
error paramefers, may not suffice Yo describe the system adequately.

in this case one is forced either fo calculate bounds, if possible, or
to seek situations for which error parameters are stable., Toward this
end the following procedure may be useful for determining average abso-
lute height errors for the rawinsonde system.

Let 6(%+) be defined for each + in T by
8(+) = p(H)sine(t) + Asinn.

Here p(1), e(+), A, n have the meanings ascribed previously. [ is
not difficult to see that 6(f) is the height of the balloon under ob-
servation at time t in T as seen from the AN/GMD~( ). A reasonable
estimator of this quantity based on observations from the radar is

eT = 12,r sin ET + Asinn.

For any T in T, by the same logic as presented earlier, the variance of
ef is approximated by

Var(e,) % sin2e(+)o” + pz(‘f)cosza(ﬂo33.

Now suppose that

]
p(t) g ——'—-L

933
Then

p2(1) § ——
33

Q

or

2
P (1‘)033 4T

If it is assumed that 0 < e(t+) < w/2, cose(t+) > 0 and p2(+)c0528(+)03
s cos2e(t)o||; hence, p2(t)cos % (1)az; ¢ (I-sin2e(1))ayy and p2(1)cos2e(t)ozz
+ sinze('l')o|| § o|y. From this it fo?lows that Vare; s oy when

%
933
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{Accepted values [5] for the error behavior of the FPS-16 give o4, = {5
feet, 63, = .0l degree; hence, the error in 94 will be bounded by 15
feet for slant ranges up to 83,000 feet.)

If Z; represents the estimate of balloon height from the rawinsonde
system, it follows immediately that Var{Zy) 2 Ver(Z4-6;) - oy as
long as
Ul'
p(t) € ——.
33

Observing that one may choose a portion of a given trajectory to satisfy
this condition, and also that for any t in the given range the expected
value of (Z4-64) should be zero, an estimate of an average variance of
(Z{+-64+) may be calculated for this interval and hence-a lower bound for
Var(Z4) in that range. it is again o be stressed that such estimates
will vary from run tc run and could only be expected to yieid gross be-
havior characteristics. However, in many circumstances gross behavicr
characteristics are better than wrong behavior characteristics or nrone
at all.




up.

%
Y

‘wmum«
ol

reapusited)
te ol

7
Sinds wad s,

~§; APPENDIX

A General Statistical Approach

;i: let X = (X,, X2y cees Xn) be a multivariate random variable with mean

x X = (X}, X9, ..., Xy) and variance-covariance matrix Z, Let T be a

¥ transformation on Euclidi n n-space of class C! in a region R contein-

ing X. Suppose that T has parametric representation

3 Yy = fl(xl’ Xos cees xn)

5 Yo = fz(xI oes xn)

# B n
ﬁ;" % yn = fn(xl, X2, ey Xn)

¥§ Consider the multivariate random variable Y = (Yys Y2, «ovy ¥,) obtained

£ from (X,, X5, ..., X.) and T in the obvious fashion. From the multi-
3 variate' random variable Y = o(X) it is desired to recover information
N about X, in particular the vector of means and variance-covariance

; malrix. The following theorem will be required which s similar o
Theorem 25 of chapter £ of [3], and is included for reference.

Theorem |: Let T be a transformation on Euclidian n-space of class C!
in a region R containing x. Let dT represent the differential [3] of

3 T at X, and assume dT is nonsingular or equivalently that the Jacobian

X of T does not vanish at x. If y - T(x), then there exists a neighborhood
, J about ¥ which is mapped in a |-1 fashion onid a neighborhood T(J) of

4 Y, and on T(J), a transformation T~ may be defined of class 91 in T(J)

such that for any z in J, lr(z)) = Z, ?nd moreover, if dT” s the
differential of 1! evaluated at Yy, dTdT"" = I, when I is the identity
matrix.

‘ The following theorem may now be established.

Theorem 2: let X, T be as previously defined. Let T  be as in theorem

3 . 1f JJv]| is defined for e  n-vector v by
n
Vi1 = /32,
Jj=1

DAY

than as T ' is a measurable transformation there exists a number n>0

such that

o ot
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r(Z)
nz L ]
Here Pr denotes probability, tr(Z) the trace of I.
3
Proof: Choose n so small that {z|||z-%||<a} is contained in J. This
assures that T is delined on T({z}||z-x||<n}), hence {z||lz-x}}<n} is
contained in {z|z=1"!(T(2))}. Now consider the event {X#T‘!(V?}.

(Observe that TT' will be measurable.) |+ is clear that {X#T™
so that Pr{X#1”' (V)} < Pr{||X-x||2n}. However,

n
Pri]|%-x|]zn} = >r{ T (%22 3 n2}.
J=1

From this it follows (see [6], section 15.7) that
n

Io..
=9 +r(p)
’ﬂr— n’- :

Pr{||X-x||2n} s

This proves the theorem.

This theorem states that the probability that X and T-I(V) will differ
depends on the size of the trace of I, and on the area of definition

of T°'. |f the nature of T is such that n is very smali, uniess tr(Z)
is correspondingly small, it may occur that in a probability sense ¥ may
furnish little information about X.

Estimation of Parameters

e e S

To estimate the matrix I from a sample of the multivariate random variable
¥, one may choose tc estimate the variance-covariance matrix of VY, call

it A, and then take dr=pdi~! as tne desired estimate. This estimate

will be biased, especially since the expected value of ¥ is not necessarily
T(X). However, if tr(Z) is sufficiently small, this will not be signi-
ficant. In dealing with multiva ‘iate stochastic processe., affairs be-
come more complicated. Let {Xy|teT} be such a process. Let the vector

of means of X; be givan for any time * in T by the vector function X(t),
and let I be the variance-covariance matrix, independent of t. Let T be

a measurable transformation on Euclidian n-space of class C! in a region

R containing {X(+)]|teT}. For each t in T, let ¥4 = T(X}). The multi-
variate process {Y1|teT} so defined will no longer have variance-covariance
matrices independent of T. Let A+ denote the variance-covariance matrix

16
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of Y+ for each T in T. Observe that no nontrivial estimate of Ay is
A possible from & single realization of {Y4+|teT}, hence a technique such
as described above for finding £ is not possible.
It has been shown [2], however, that for each t in T there exists a trans- i
formation Lt on n-space such that Lt(Xt) is a multivariate random vari-
able with mean T(X(t)) and variance~crvariance matrix dT+ZdT+, where
d7+ represents the differential of % at x(t). Moreover, for any chosen
precision figure ¢, there exists a number &6(e) :uch that
H

tr(z) ‘ ;
Pri] ¥y - LiXp]] 2 e} s 55 |

H
[f for a chosen 30, tr(z) is sufficiently small that {L4(X¢)|tel} is . .
a uniformly satisfactory substiiute for {V4|teT}, the following appreach
is possible. For i and j among 1, 2, ..., n,_let u(i,j,t) and o'(i,j, )
represent the i, jth entries of dT4+ and dT4+IdT+, respectively. Now
assume I is diagonal so that one may always write '

n H ' ' I
é o'(i,j,t) = kflu(i,k,f)u(j,k,T)okk. } ' (l)‘

Since dT+IdT} is symmetric, it is possibie to find,

| n{n+l) )
—Z b
distinct equations of the above form of which at most n may be independent.
A reasonable choice of n equations is obtained by setting i = j, obtaining
for =1, 2, ..., n,

"
! ] l

'; n ( .
{ o'(2,8) = zu2(z,k,+)okk.
3 -
] k=1 . .
]
% Observe that the fact that dT4+ is nonsingular does not imply that this = !
\ system is nonsingular. Now suppose that for [T|,+2]'an inferval inT, R
ol(i,j,t) and u(i,j,t) are integrable functions of ¥. One may then write 1
from (1) N
’ )
| }2 N T2 : ; ’
— o'(i,j,)dt = g Lo Suli, kP, k, ) dtle, o (p) .
vy 0 *2 TI TI ke +2 TI Tl ’ ! kk -
fad
1
il 17 ,
i
@ :;
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: .
‘Like (1), (2) is also a linear equafron in the oki with the coéfficients

complefely determined by the knoaledge of {x(T)ITsT} and . |If the
lnfegra!

LT P i '
: T TotCi,j,HHdt

. 2! ﬁl : H : o
. * * ‘

is known, for some n distinct values!of (i,j), and the resulting system
is -nonsingular, the Okk aré comp leteiy determined. However, these
values are not known. |f estimates of some saflsfacTory set of these
integrais exist,:however, this may lead iq estimates of the okk.

Consider the system deffneq far ¢ =1, 2, ...,:n by !
14 : ! '
i i
S j n
T 1 6'G,0Ndt = 3 E—-———e-f W2(j,,1 170,
' | v k=1 2 I *l

1

Let [T],TZJ be divided into m-1 equal |n+ervals of length A by

+| ='5| < 59 << Sp = To. Let X; . for W= 2, oo, mrand let
Xj be the mean of Xg. Define {L;(X; ;IJ l m} in’the obvious manner, and
let Lj’; be tihe ith”componert of B Now for =1, 2, ..., n, define
N
. 1 ‘ ,rn
. ] = - - 2
| ' Si m‘52|ELJ:*(xJ{ T;(xj)] .

. . i
. .

-

I+ fol lows that

m . om
_i - 2_____'_ e e e
%(Si) = E-.E EELJ’iKXJ) Tﬂ(Xj)] o .E 0'(I,I,J)
! J=1 J=1
l= my .
= L o'(i,i,s.)A.
3 , TZ-Tl j=1 J

, ‘ |
Since o'(i,1,1) is infegrable on [t|,t,], as A approaches zero,
| A |
T zO"“,iqS.)A-
27 =1 J

.
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approaches
T
Tz-fl +Ia'\3,i,+)d+.
The linear systen
Pl 2 an
S.= 12 -———:—" Jouelj, k, t)dt J=1, 2, ..., n
I e T2yt k ’ '

may now be solved for wy, providing that the system is nonsingular.
If it should occur that the system is singular, other members of the

n(mt)
=

distinct equations of this form mav be fried or [Tl,TZJ varied to obtain
a sufficient number of independent eauations.
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